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Subcritical Asymptotic Behavior in the 
Thermodynamic Limit of Reversible Random 
Polymerization Processes 
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We consider a reversible Markov process as a chemical polymerization model 
and study the asymptotic behavior (in the thermodynamic limit as N--+ + oo) 
of a particular probability distribution on the set of N-dimensional vectors, the 
kth component of which is the number of k-mers. The study establishes the 
existence of three stages (subcritical, near-critical, and supercritical stages) of 
polymerization, depending on the value of the strength of the fragmentation 
reaction. The present paper concentrates on the analysis of the subcritical stage. 
In the subcritical stages we show that the size of the largest length of polymers 
of size N is of the order log N as N--+ + ~.  

KEY WORDS: Polymerization; Markov process; limit behavior; stationary 
distribution. 

1. I N T R O D U C T I O N  

If we l imit  ourselves to h o m o g e n e o u s  systems where  diffusion effects are 
ignored,  there are essential ly two mode ls  descr ib ing  systems of  po lymers  
evolving t h r o u g h  the irreversible aggrega t ion  reac t ion  

( j ) + ( k )  Rjk ( j + k )  (1) 

whereby  po lymers  of  lengths  j a n d  k l ink themselves together  to form 
po lymer  of  length  j + k (the n u m b e r  Rjk denotes  the co r r e spond ing  reac t ion  
ratet~):  one  is Smoluchovsk i ' s  model ,  the o ther  is Lush in ikov ' s  model .  The  
connec t ion  be tween  the two mode ls  is as follows: let N~(t), N2(t),..., NN(t) 
be the r a n d o m  va luables  deno t ing  the n u m b e r s  of  m o n o m e r s ,  d imers  ..... 
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N-mers at time t in Lushnikov's model; then the expected values 
(1/V)E[Nj(t)] should coincide in the thermodynamic limit N ~ o o ,  
V ~  00, N/V= p with the densities xj of Smoluchovski's model; see ref. 2. 
For Smoluchovski's model the kinetic theory of polymerization does not 
contain the equilibrium theory of Flory (3) and Stockmayer (4) as a limiting 
case for large values of the time, due to the absence of fragmentation effects. 
In fact, as clusters are growing in size, bred-up processes become more 
important, and the irreversible coagulation reactions should be replaced by 
reversible coagulation-fragmentation reactions. Many studies (5-7) about 
the kinetic equation containing the combined effects of coagulation and 
fragmentation have been done. Recently several papers (''s'9) have been 
devoted to the Lushnikov model; a detailed asymptotic analysis of the 
Flory-Stockmayer-Whittle polymerization process was given by Pittel, 
Woyczynski, and Mann. tl~ The studies motivate us to consider a 
reversible random polymerization process which permits the congulation- 
fragmentation reaction, i.e., 

(j) + (k) @ (j + k) (2) 

The objective of the present paper is to study the limit distribution (in 
the thermodynamic limit) of the number of polymers for the process in the 
subcritical stage; the near-critical and supercritical stages are analyzed in 
ref. 14. In Section 2 we give the formal description of the reversible random 
polymerization process M~(t) and its stationary distribution. The condi- 
tions under which the critical value 2c can be determined are presented in 
Section 3. In Section 4 we give a precise asymptotic formula of the parti- 
tion function ~r~r in the subcritical stage and prove that the size of the 
largest length of polymers of size N is of the order of log N as N ~ ~ in 
the subcritical stage. 

2. THE REVERSIBLE POLYMERIZATION PROCESS AND ITS 
STATIONARY DISTRIBUTION 

The reversible random polymerization process is a continuous-time 
Markov chain {Mu(t): t>_-0} with the state space 

{ N } 
ON= neNN: ~ knk=N (3) 

k = l  

The kth component of the state vector a represents the number of k-mers. 
The only allowed transitions from n are to states of the form 



Reversible Random Polymerization Processes 391 

+ = ~(n], n2,..., n j -  1,..., n k - -  1 ..... nj+k+ 1 ..... nN) 
njk ( (h i ,  n2 ..... n : - -2  ..... n2j+ 1 ......... nN) 

_ = ~(nl, n2 ..... nj+l,...,nk+l ..... nj+k--1 ..... nN) 
"Jk ((nx, n2 ..... n j + 2  ..... n2j--1 ......... njv) 

if j4:k 
if j=k  

if j4:k 
if j=k  

(4) 

(5) 

and they occur with rate 

Q . . ,  = 

1 -nj~, ~-iRjknjnk if n ' --  + 

I R o.n:(n : -  I) if n' = n~, 

IF:kn:+k if n' - = njk  

0 other n' 4: n 

j4:k 

j = k  
(6) 

Q . . = -  ~ Q. . ,  
i i ' ~ n  

where R u > 0, F u > 0; they satisfy the following equations: 

2 
~" F o = ~  ( k -  1), k~>2 (7) 

i + j f f i k  

2Fof(i + j) = Rof(i ) f ( j )  (8) 

where 2 > 0  is constant, and {f(k),  k~>l} is a sequence of positive 
numbers. The formulas (7) and (8) and their meaning can been found in 
ref. 7. The choice of Q**, reflects the fact that in the homogeneous system, 
reaction (2) occurs with a probability proportional to the number of 
reactants and inversely proportional to the volume; here the density is 
taken to be equal to one, so that the volume coincides with the total 
number of units N. 

From (6)-(8) we see that the process MN(t) has a unique stationary 
distribution. 

L e m m a  1. The process MN(t) has a unique stationary distribution 
which is of the form 

l N nk 

P~n)=-~NklJ=l f ( ~ f(k'  1 / nk'' nE~'2 N (9) 
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where 

Moreover, we have 

Pu(n) Q.n, =PAn ' )  Qn,n 

Proof. It follows from (6) that 

P~n') Q.,. 
n'  ~ QN 

= E PN(n')Q.,.-PN(n) Y', Q.., 

= ~  Pu(n~)Q.~.+Z Pu(n~)Q.: . -Pu(n)  Z Qnn, 
j,k j,k n ' ~ n  

1 
= ~ Pu(n/-~)-~-~R:k(n./+ l)(nk+ 1) 

jr 

1 
+ ~ P,v(nff)-~-2R/.i(n/+2)(n.i+ 1) 
)=k 

I + E Pu(nj~)~:F.u,(nJ+k+l)+ Z Pu(n:+) I ~ Fjj(n2j + l ) 
j~k j f k  

--PN(n) ~ Q.., 
n ' ~ n  

j 2 f ( j+k )  (nj+l)(nk+l)N --~Rjk(ni+l)(nk+l) 

~ N f ( j ) f ( j )  n2j 1 R~.(nj+2)(nj+l) 

2 f ( i+j )  njnk 1 
+:~k N ~ )  (ny+k + 1)N FJk(rlj+k q- 1) 

+ Z 2 f(2j) n:(nj--1) 1 ] 
~F~.(n2j+l ) -  y' Qo., 

:=kNf( j ) f ( j )  (n2:+ 1) " . ,#. 

=PN(H)(n~nQnn'--n~nQnH')=O 

Dong 

(10) 

(11) 
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From this and Theorem 4.37 of ref. 15, we see that Pu(n), n e QN, is the 
unique stationary distribution of { Mu(t): t >1 0}. 

It is easy to show (11). By (11) we know that Mzv(t) is a reversible 
Markov chain. | 

Next we obtain the generating function of { nN}. 

L e m m a  2. Let 

by 

=N(Y)= Y, l~I [yf(k)]"~ 
n~.QN k = l  nk ! , N>~I, y>.O 

Then the generating function of the partition function { nu(y)} is given 

1+ ~. nN(y) xN=exp[yF(x)] ,  Ixl<r (12) 
N = I  

where 

F(x) = ~ f ( j )  x / 
j = l  

and r is the radius of convergence for the series F(x). 

Proof. Let Zco(y)= 1. It follows that 

n ~ N  

N 

= Z E  
j = l  ne.QN 

N 

=2 
�9 N ! . j = l  n , ~ . k f l k t k = N - -  J 

N 

= ~ f(J)gN-:(Y)  
j = l  

N [/(k)] "k 
~ y ) =  Y', ( n l + n 2 + ' "  +nN) y ("'+"2+'''+"N)-' rI  

k = l  n k !  

[yf(k)] "k Y"J- 'f(J)"J r-I nk ! 
n~ n.i! k~,/ 

2 f(J) NI-IJ 
[yf(k)]"~ 

k =  1 l l k !  

Hence, if we put 

A(x, y) = 1 + ~ fLy(y) x N 
N = I  
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then 

N 

A;(x.y)= E m)xJ, ,,-Jly)x N-' 
N = I  N = I  j = l  

j - -1  N = j  

and therefore 

The lemma is true. | 

log[A(x, y)] =yF(x) 

A(x. y) = exp[ yF(x)] 

3. THE CONDIT IONS OF DETERMINING THE CRITICAL VALUE 

In the section, we give the conditions under which the critical value of 
the parameter 2 can be determined. 

Suppose that there exists a positive radius 7 of convergence for the 
series F(x)  = ~,~= ~ f ( k )  x k such that 

and 

F'(F) < + oo (13) 

F"(F) = + oo (14) 

F"(F) lim F ' ( x )  , ,  
[F" ( f ) ]  3 x ~ , ~ - o  [F"--~]  3 ~ u  (15) 

Then the critical value I c is given by 

2c = 7F'(F) (16) 

Remark. It is shown elsewhere (~4) that (14) and (15) are needed to 
determine the critical value 2c. 

Example 1. For the RAf model the numbers f ( k )  have been 
calculated already by Stockmayer: 

f k [ ( f _  I) k]! 
f ( k )  = 

[ ( f - 2 )  k + 2 ] ! k !  
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So we can obtain the radius of convergence for F(x)  = ~.__ ~ f ( k )  xk: 

F=  lim f ( k )  _ ( f - 2 ) f - 2  
k ~ f ( k +  1) f( f-1):- '  

In the case f = 2, 

1 
2 

X F ( X ) =  ~, 2 k - l x k =  
k= I 1 - 2 x  

I 
F' ( x )  

( 1 -- 2x) 2 

we can check that F(x)  does not satisfy (13) and (15), so one may consider 
the critical value 2c = + oo. 

For  f =  3, we have f =  1/12 and 

F(x)  = lo-~X-2(1 12x)3/2+ l x - i  ] . . -2 i 

It is easy to check that (13)-(15) hold for F(x), so we obtain 

(17) 

For  f>~ 4, we need another method to determine the 2c, since it is dif- 
ficulty to obtain the analytic expression of  the series F ( x ) =  Z~=~ f ( k ) x  k. 
Notice that F, F ' ,  and F"  have the same radius of  convergence, and 
F"(x)  >10 as x >/0, so 2 ( x ) =  x F ' ( x )  is an increasing function as x/> 0, and 
2(x) reaches a maximum (finite value) at x = ~ ,  that is, 2c=2( f ) .  By 
combinat ion of  (7) and (8), we have the recursion relation 

(k-l)f(k)=�89 ~, R~:f(i)f(j) (18) 
i + j = k  

Multiply both sides of  (18) by x e and sum over k = 2 , 3  ..... Taking 
R o. = [ ( f - 2 ) i  + 2]  [ ( f - 2 ) j  + 2]  (see ref. 7) and using the identity 

- ~ a~b: x k 
k I I X k = l  k = 2  i + j = k  

to the series F(x)  = Zk~'= ~ f ( k )  x k, we see that 

2 [ x F ' ( x )  -- F(x) ]  = ( f - -  2) 2 [ x F ' ( x ) ]  2 + 4 ( f - -  2) x F ' ( x )  F(x)  + 4F(x) 2 
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Put  ; t (x )=  xF'(x); then we have 

( f - -  2) z 2(x) 2 + [ 4 ( f - -  2) F(x) -- 2] 2(x) + 2F(x) + 4F(x) 2 = 0 

and therefore 

1 
2(x) -- ( f  _ 2) 2 { 1 -- 2 ( f -  2) F(x) +_ [ 1 -- 2f(f-- 2) F (x ) ]  ~/2} 

Notice that )t'(x) > 0  and F ' (x )  > 0  as x > 0 ,  so 

1 
2(x) ( f _ 2 ) z { 1 - Z ( f - Z ) F ( x ) - [ 1 - 2 f ( f - Z ) F ( x ) ] ' / 2 } ,  x>~0 (19) 

Hence, if and only if F(x)= 1/[2f(f-2)],  )t(x) reaches a maximum, that 
is, 

f - 1  
)to = r-F'(~-) = )t(f) = f ( f _  2)-------- ~ (20) 

This coincides a well-known resultJ 7) By (19) we see that for f~>4,  
( 13)-(15) all hold. 

4. THE LARGEST LENGTH OF POLYMERS IN THE 
SUBCRITICAL STAGE 

First we give a precise asymptotic formula for the parti t ion function 
nN in the subcritical stage. 

T h e o r e m  1. Let 0 < ) t o < ) t c ;  then for any f ixedj~>0 and large N, 

1 ( F'(xo) ,~l/z 

• Xio(N _ j ) - , / 2  exp N \( F(x~ o - log Xo) 

where x o is a positive number satisfying xoF'(xo)=)to, V(N)--.O as 
N-+ o0. 

Proof. By (12) and Cauchy's integral formula 

N l o g x l  x -  ~ nN-j=nN_j(~o)=(2~i)-';~eexp[--~ooF(x,--(N--j) dx 

where cr is a contour  of radius less than ~-surrounding the origin x = 0. 
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Put 

f~x) F(x) -- ( N -  j)  log x 

and choose the radius of (d equal to a root Xo o f f ,  x) = 0. From 

f ~ ( x )  = ~ F'(x) -- = 0 

we obtain f 'u(Xo)= 0, where Xo satisfies xoF' (xo)= 20, Xo < s This root is 
unique, because xF'(x)  is strictly increasing as 0 ~< x < 7. Such a root is a 
saddle point of exp[ fu(x) ] .  A standard saddle-point-type argument shows 
then that 

,[ i J2 I J ] 
~ u _ / = [ l + o ( 1 ) ] ~  Xof~Xo)  2 ,-5-- exp fu(xo) +-~o F(xo) 

1 [ r ' (xo)  l = [1 + V(N--j)] 
[ xoF" (x - -~F ' ( xo )  j 

This completes the proof. | 

Next we study the largest length of polymers in the subcritical stage. 
Let Nj denote the total number of polymers of length j in n e ~ and 

LN denote the size of the largest length of polymers in n ~ s ~ .  For an 
integer S >/1, let 

Theorem 2. 

Yus = ~ N/ (21)  
) ~ s  

If the number f (k )  defined in (8) satisfies 

log f ( k )  = Ak + B log k + e(k) (22) 

where A and B are constants, and e(x) --* C, e'(x) --* 0 as x --, + oo, then for 
0 < 2 o < 2c, the size LN of the largest length of polymers in n is asymptoti- 
cally, in probability, a logarithmic function of N. More precisely, 

LN = K~ [ log N + B log log N + Op( 1 ) ] (23) 
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or equivalently 

,im I I ) N~ ~ Ko [ log N +  B log log N]  >~ co(N) = 0 (24) 

where Op( 1 ) denotes random variables bounded in probability, co(N) ---, + co 
slowsly as n --* oo, K o = - log x o - A, and xo is determined by 20 = xoF'(xo). 

Proof. First we show that K o > 0 .  It follows from F ( x o ) =  
Z~= l f(k)  x~ < oo, Xo < ~, and (22) that 

lim e[ln f(k)]/kXo .~. eAxo < 1 

so l o g x  o - A < 0 , t h a t  is, K o > 0 .  
By (9) and (10) it follows that 

ENj= ~ ,,jL,,,(n) 
n e .G'A, 

[ Nf(j)/2o ] ''j [ Nf(k)/2o ] ,,k = I  2 (ny-I)! 1-I 
7IN n N nk[ 

: ~ '~k ffi I knk= N km~j 

=Nf(j)  ~ [Nf(k)/2o]"J-1 I-[ [Nf(k)/2~ 
;to~N ~ . ( n j -  1)! k,,j nk! n: "~k~l knk~N--J 

N- - j  = Nf(j) ~ l I  [Nf(k)/2~ 
)"07'gN n:~_.N--lJknk=N_jk=l nk!  

Nf(j) ~N_y(N/2o) 
20 ~N(N/~o) 

From Theorem 1 we have 

gNy= [ I+ W(N-j)-W(N)INf(J)(1-~)-meY'~ J 

Let 

e,'O, XO 
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Using (22), we have for large N 

N IN/2] Jv 

2'%=2'%+ X 
j>~S j>~S j =  [N /2 ]  + I 

= 1-1 + o ( 1 ) ]  [-~o ; (1 --x)-me-K~176 

N 2 I ] 
+ ~ s ( I - x) -I/2 e - t<~ '~ .,N +,(.~v) dx 

Using integration by parts, we have 

=[ l +o(1)] (~-~  (1--s)--l/2e--KoS+Sl~ 

N f 1/2 + ~  Js/N {(1 - x) -3/2 e--K~176 

2N2 e - - K ~  log x N +  e(xN)  1 
- 2--7- (1 - x ) m  

U2 

2N 2 ] +-~o fl/2{(1--x)t/2e-K~176 

It is obvious that the last two terms go to zero as N ~ m. So Y,j>_.sNjN ~ is 
bounded away from 0 and oo as N ~ oo if and only if 

1 
S = So = ;7. (log N + B log log N) 

1% 
(25) 

Since 

[ N/2 ] 

j>~ so 
N 

E &+o, V(N)+O 
j = [ N/2] + I 

(as N---, + m )  

(as N ~  + m )  
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we have for N--* oo 

N IN~2] 
2 V ( N - j ) N j =  Y' 

j ~  So j>~ So 

N 

v i m  E 
j>~ So 

N 

V ( N - J )  ArJ + E 
j =  I N / 2 ]  + l 

V ( N - j )  N j ~ O  

So 
N ~ V(N-- j ) - -  V(N) ~, 

E Y = E & + -I + ' 
j>~s j a s  

is bounded away from 0 and oo as N--* + m if and only if S = So. Hence, 

EYNso = ao + o( 1 ) 

where ao = 1/flo2 o, flo _ - c v B + ,  ~" / ~ 0  " 

If  we prove that, for every fixed m >/0, 

E(YNso),,~a'~, N ~ o o  (26) 

where (YNSo),, is the total number  of  the ordered m-tuples of polymers of  
length j>~ So, then, asymptotically,  YNSo has Poisson distribution with 
mean ao, t~6) so that  

PN( YNso = k) = e - ' ~  ~ + o( 1 ) (27) 

for every k >~ 0. 
Let re(N) = nN and (Ni) k = Ni(N~- 1 ). . .  ( N  i - -  k + 1); then 

E( YNs)., = ~ E[(Ns)ks (Ns+ t)ks+,""' (NN)kN] 
kl + " - ' k N = m  

f i  ~( --Y.i=, J,) 
\~ooJ Jr+k+ ~ f(Ji) rt(N) " ' + j m ~ N  i = 1  

ji>~ S, i>~ 1 

= s [1 +G(N,j'm)] \'-~o/ f l  f(J*) 1 - e y'~'~176 
j'm<~N i=  1 

where j "  =Jl + " '  + Jm, G ( N , j ' ) =  [ V ( N - - j ' , ) -  V(N)]/1 + V(N). 
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Let 

Yus(J ' )  = f(Ji) 1-- e j;,'~176 
i = l  

Taking S =  So defined in (25) and using integration by parts, we have for 
large N 

E ~ .t Y~so(J m) 
j;. ~< [ iv/2] 

ji>~S 

=[1  + 0(1)] --Nzm ft/2-(m-1)So/N dxl fl/2--x,--(m-Z)So/N dxz 
2 '~ "SolU "Sore 

x f , / 2 - x r o ; ' x , (  m ,--I/2 m ) 
~. x,)  exp ( - - K o N  • xi 

" ' 'OSo/N \1 - - i = l  / \ i = 1  

i=l 

= [ 1 + o ( 1 ) ]  + I,(N) 
i = l  

where 

Ii(N) 
N 2 m  - 2 i +  1 r~ f 

H(i)-3/2 T(i) dxl . . .dx, ,_j+ l 
, , .  ~ J ' " J  2fl~176 x,+...+ ..... ~+,+.-i)so/N~l/2 

xj >t So IN 
g 2., - 2i + i 

+ I I . . . f  H(i)-l/2T(i) 
2flo2 o~m :,,+ . . .  +xm-i+l+(i--lJSo/N<~l/2"JJ J 

xj>~So/N 

•  dxx ' "dxm- ,+ ,  

where 

H(i)= 1 -  ~ x j - ( i - 1 )  , l<~i<~m 
j ~ l  

m--i+l m--i+l } 
T ( i ) = e x p - - K o N  ~ x j + B  ~ [ln(Nxj)+e(Nxj)] , 

j=l j = l  
l <<. i <<. m 
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Using again the interpretation by parts for I;(N), we can show that 
limN~ ~ I~ (N)= 0 (1 ~< i ~< m). By the same method, we have 

lim Y'. ~'NSo 
N ~  cc, j~ ,  ~> [ N ] 2 ]  + I 

j i ~ > &  

N 2m 
=[ I  +o(I)] lim I~'"f 

N ~ + o o  ~ t ~  l ~ x l + - . . + X m > ~ l / 2  

x, >i So/N 

Thus 

H ( 1 ) T ( 1 ) d x , . . . d x m = O  

lim E( YNso)., 
N ~ o o  

lim ~ [ 1 + G(N, j'.,)] ~ " = YNso(Jm) 
N - -  ~176 jm<~ [ At]2 ] 

N 

+ lim ~ [1 + G ( N , j , , , ) ]  ~ ' "' Y N S o ( j m ) =  
N ~ ~ 1 7 6  j ' m ~ [ N [ 3 ] +  l 

1 m 
= O" 0 

fig%- 
�9 t ,t since limN_ ~ G(N, J,,) = 0, as j , ,  -.~ IN/2] .  This proves (26). 

By the same method, we have 

P1r YN~So+ cN~ = k) = e - ~  -~. + o( 1 ) 

P N( YNr oN) = k)  = e-~ -~. + o( 1 ) 

for any bounded positive number series {CN}, 
at = tro exp(--KoCN) and a2 = ao exp(Kocu).  

Hence 

where CN < SO, 

PN( [LN-- Sol >/CN) 

<~ PN(LN >1 So + ON) + PN(LN <~ So -- CN) 

= PN(YN~So+cN) >1 1) + PN(YN~So--cN) = 0 )  

= 1 - - e - ~  

When cu-~  0o slowsly as N--* m, we obtain (24) immediately. This 
completes the proof. | 

As an application of Theorem 2, we take two examples. 
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Example 2. For the RAfmodel we take 

fk[(f__ 1) k]! f (k)  - (f>~ 3) [ ( f - 2 )  k+2] !k !  

It is not difficult to calculate by Stirling's formula that 

where 

log f (k)  = Ak + B log k + e(k) 

( f ( f  - -1 ) f  - l'~ 5 
A = log \ (-'-~--~-_ 2-~-~i j ,  B =  --~ 

1 f - 1  
e(k) ~ ~ l~ (2n( f  _ 2)5 ) 

so, for the RAf model in the subcritical stage 

where 

1 I logN--~loglogN+Op(1)  ] LN=-~o 

(f_(f-- 1) f - I  ) 
K o = - -  log x o - -  l o g  \ (--f-~_ ~)7-~-_ 2- 

E x a m p l e  3. For the RA~ model we take 

k k -  2 

f ( k ) =  k! 

where k k-2 is the number of trees with k labeled vertices by Cayley's 
formula. 

It can be calculated that 

log f (k)  = k - ~ log k + c(k) 

e( k ) --* - �89 log 2n 

so, for the RA~ model in the subcritical stage 

1 [ l o g N - ~ l o g N + O , ( 1 )  1 LN=~o 

where K o = --log Xo-  1. This result is similar to Pittel's; see ref. 13. 

822/80/1-2-26 
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